The goal of our team is to discover, develop, integrate and transition energetic materials technology that maximizes lethality, survivability and safety for air-delivered munitions. We study the basic processes and scientific phenomena that are necessary to predict, design and characterize energetic materials. A variety of topics are being considered for enhancing the energy density of materials based upon improved reaction rates while maintain stability under ambient storage conditions (ie. Room temperature, humidity). Specific topics of interest include: 1) energetic films via spin casting of fuel-oxidizer blends, 2) light tunable sensitization of energetic materials, 3) self-assembly of thermite-based structural materials, 4) scale up processes such as resonant acoustic mixing and 5) synthesis of energetic nanoparticles using superfluid helium droplet assembly and other techniques. A successful candidate will possess a strong multidisciplinary experimental background in physics, chemistry and materials science/engineering with knowledge of modeling and simulation techniques.
References:
1. Prakash, A., A.V. McCormick, and M.R. Zachariah, Tuning the Reactivity of Energetic Nanoparticles by Creation of a Core−Shell Nanostructure. Nano Letters, 2005. 5(7): p. 1357-1360.
2. Ferrando, R.; Jellinek, J; and Johnston, R.L. Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles. Chem. Rev., 2008, 108 (3), pp 845–910.
3. Heting Li, Mohammed J. Meziani, Fushen Lu, Christopher E. Bunker, Elena A. Guliants and Ya-Ping Sun Templated Synthesis of Aluminum Nanoparticles - A New Route to Stable Energetic Materials. J. Phys. Chem. C, 2009, 113 (48), pp 20539–20542
4. Lei Zhou, Ashish Rai, Nicholas Piekiel, Xiaofei Ma and Michael R. Zachariah
Ion-Mobility Spectrometry of Nickel Nanoparticle Oxidation Kinetics: Application to Energetic Materials. J. Phys. Chem. C, 2008, 112 (42), pp 16209–16218.
5. Rusty W. Conner and Dana D. Dlott. Time-Resolved Spectroscopy of Initiation and Ignition of Flash-Heated Nanoparticle Energetic Materials. J. Phys. Chem. C, 2012, 116 (28), pp 14737–14747.
6. Yong Qin, Yang Yang, Roland Scholz, Eckhard Pippel, Xiaoli Lu, and Mato Knez. Unexpected Oxidation Behavior of Cu Nanoparticles Embedded in Porous Alumina Films Produced by Molecular Layer Deposition. Nano Lett., 2011, 11 (6), pp 2503–2509.
7. William K. Lewis, Barbara A. Harruff, Joseph R. Gord, Andrew T. Rosenberger, Thomas M. Sexton, Elena A. Guliants, and Christopher E. Bunker. Chemical Dynamics of Aluminum Nanoparticles in Ammonium Nitrate and Ammonium Perchlorate Matrices: Enhanced Reactivity of Organically Capped Aluminum. J. Phys. Chem. C, 2011, 115 (1), pp 70–77
Keywords: Energetics, Thermites, Nanoparticles, Energy density, Reactivity